HiveMQ Edge-to-Cloud AI Pipeline
Anomaly Detection using HiveMQ Cloud, Python (PyOD), and Flask
System Overview
Step-by-Step Breakdown of the Pipeline
1. Input Layer β PLC to HiveMQ Edge (OPC UA)
2. Transport Layer β HiveMQ Edge to HiveMQ Cloud (MQTT)
3. AI Layer β ML server running Python + Flask + PyOD locally on the compute
What is Anomaly detection?
Why we need it:
π§ PyOD β Python Outlier Detection Library
Installing Pyod and testing Anomaly detection
Anomaly detection using Pyod and Node-RED
Testing Anomaly detection with PLC Data
4. Output Layer β Returning anomaly alerts via MQTT β HiveMQ Edge β PLC (optional)
Complete Workflow
β₯οΈ Work With Me
PreviousMulti-Site PLC-to-Cloud Flow using HiveMQ Edge + CloudNextAnomaly detection Code Explanation
Last updated








